Skip to main content

Structs in C#

Like classes, structs are data structures that can contain data members and function members, but unlike classes, structs are value types and do not require heap allocation. A variable of a struct type directly stores the data of the struct, whereas a variable of a class type stores a reference to a dynamically allocated object. Struct types do not support user-specified inheritance, and all struct types implicitly inherit from type object.

Structs are particularly useful for small data structures that have value semantics. Complex numbers, points in a coordinate system, or key-value pairs in a dictionary are all good examples of structs. The use of structs rather than classes for small data structures can make a large difference in the number of memory allocations an application performs. For example, the following program creates and initializes an array of 100 points. With Point implemented as a class, 101 separate objects are instantiated—one for the array and one each for the 100 elements.

class Point
{
      public int x, y;
      public Point(int x, int y) {
            this.x = x;
            this.y = y;
      }
}
class Test
{
      static void Main() {
            Point[] points = new Point[100];
            for (int i = 0; i < 100; i++) points[i] = new Point(i, i);
      }
}
An alternative is to make Point a struct.
struct Point
{
      public int x, y;
      public Point(int x, int y) {
            this.x = x;
            this.y = y;
      }
}

Now, only one object is instantiated—the one for the array—and the Point instances are stored in-line in the array.

Struct constructors are invoked with the new operator, but that does not imply that memory is being allocated. Instead of dynamically allocating an object and returning a reference to it, a struct constructor simply returns the struct value itself (typically in a temporary location on the stack), and this value is then copied as necessary.

With classes, it is possible for two variables to reference the same object and thus possible for operations on one variable to affect the object referenced by the other variable. With structs, the variables each have their own copy of the data, and it is not possible for operations on one to affect the other. For example, the output produced by the following code fragment depends on whether Point is a class or a struct.

Point a = new Point(10, 10);
Point b = a;
a.x = 20;
Console.WriteLine(b.x);

If Point is a class, the output is 20 because a and b reference the same object. If Point is a struct, the output is 10 because the assignment of a to b creates a copy of the value, and this copy is unaffected by the subsequent assignment to a.x.

The previous example highlights two of the limitations of structs. First, copying an entire struct is typically less efficient than copying an object reference, so assignment and value parameter passing can be more expensive with structs than with reference types. Second, except for ref and out parameters, it is not possible to create references to structs, which rules out their usage in a number of situations.

Comments

Popular posts from this blog

gcAllowVeryLargeObjects Element

There are numerous new features coming with .NET 4.5 and here, on this blog, you can find several posts about it. But the feature we are goint to talk about today is very exciting, because we were waiting for it more than 10 years. Since .NET 1.0 the memory limit of .NET object is 2GB. This means you cannot for example create array which contains elements with more than 2GB in total. If try to create such array, you will get the OutOfMemoryException. Let’s see an example how to produce OutOfMemoryException. Before that Open Visual Studio 2012, and create C# Console Application, like picture below. First lets create simple struct with two double members like example below: 1 2 3 4 5 6 7 8 9 10 11 12 public struct ComplexNumber {      public double Re;      public double Im;      public ComplexNumber( double re, double im)      {    ...

Support for debugging lambda expressions with Visual Studio 2015

Anyone who uses LINQ (or lambdas in general) and the debugger will quickly discover the dreaded message “Expression cannot contain lambda expressions”. Lack of lambda support has been a limitation of the Visual Studio Debugger ever since Lambdas were added to C# and Visual Basic.  With visual studio 2015 Microsoft has added support for debugging lambda expressions. Let’s first look at an example, and then I’ll walk you through current limitations. Example To try this yourself, create a new C# Console app with this code: using System.Diagnostics; using System.Linq; class Program { static void Main() { float[] values = Enumerable.Range(0, 100).Select(i => (float)i / 10).ToArray(); Debugger.Break(); } } Then compile, start debugging, and add “values.Where(v => (int)v == 3).ToArray()” in the Watch window. You’ll be happy to see the same as what the screenshot above shows you. I am using Visual Studio 2015 Preview and it has some limitati...

An Introduction to Windows Azure Table Storage

Windows Azure Tables are a non-relational, key-value-pair, storage system suitable for storing massive amounts of unstructured data.  Whereas relational stores such as SQL Server, with highly normalized designs, are optimized for storing data so that queries are easy to produce, the non-relational stores like Table Storage are optimized for simple retrieval and fast inserts.  This article will cover the very basics of Windows Azure Table storage and provide you with resources and suggested topics to continue your learning. Some people, when first learning about the Windows Azure platform, find it hard to understand the purpose of the Table Storage feature.  This is especially true of those who are familiar with developing applications using highly relational data.  To get a good understanding of how a Key-Value Pair system differs from a traditional relational database you can read Buck Woody’s article on the topic in his continuing series:...